76,508 research outputs found

    Clues About Bluffing in Clue: Is Conventional Wisdom Wise?

    Full text link
    We have used the board game Clue as a pedagogical tool in our course on Artificial Intelligence to teach formal logic through the development of logic-based computational game-playing agents. The development of game-playing agents allows us to experimentally test many game-play strategies and we have encountered some surprising results that refine “conventional wisdom” for playing Clue. In this paper we consider the effect of the oft-used strategy wherein a player uses their own cards when making suggestions (i.e., “bluffing”) early in the game to mislead other players or to focus on acquiring a particular kind of knowledge. We begin with an intuitive argument against this strategy together with a quantitative probabilistic analysis of this strategy’s cost to a player that both suggest “bluffing” should be detrimental to winning the game. We then present our counter-intuitive simulation results from playing computational agents that “bluff” against those that do not that show “bluffing” to be beneficial. We conclude with a nuanced assessment of the cost and benefit of “bluffing” in Clue that shows the strategy, when used correctly, to be beneficial and, when used incorrectly, to be detrimental

    Solid-state detector

    Get PDF
    Solid state detector - N type silicon surface barrier diode as microparticle detecto

    Electronic particle-parameter analyzing system for an electrostatic hypervelocity projector

    Get PDF
    Description of automatic particle parameter analyzing system for electrostatic hypervelocity accelerato

    Velocity selector for an electrostatic hypervelocity accelerator

    Get PDF
    Velocity selector system for particle detector of electrostatic hypervelocity accelerato

    Solid state high voltage pulser

    Get PDF
    Solid state transistor circuit development for production of hypervelocity high vacuum puls

    Kinetics of Open Circuit Processes in Undischarged Li/SOC12 Cells

    Get PDF
    The kinetics of the heat producing processes in undischarged Li/SOCl2 cells under open circuit conditions were measured by heat-conduction microcalorimetry. The cells studied, Honeywell type G2666 reserve cells, were activated as needed and the rate of open circuit heat output determined as a function of time since activation and temperature. The results at each temperature can be described by an equation of the form q = Bktx where q is the rate of heat output, B is the heat produced per unit of reaction, k and x are empirical constants, and t is the time since activation. Both x and k are found to be functions of temperature; therefore, accelerated testing at elevated temperatures is probably not valid for these cells until the processes involved are better understood
    corecore